Identification of Planar Sextic Pythagorean-Hodograph Curves

نویسندگان

  • Hui WANG
  • Chungang ZHU
  • Caiyun LI
چکیده

Pythagorean-hodograph (PH) curves offer computational advantages in Computer Aided Geometric Design, Computer Aided Design, Computer Graphics, Computer Numerical Control machining and similar applications. In this paper, three methods are utilized to construct the identifications of planar regular sextic PH curves. The first exhibits purely the control polygon legs’ constraints in the complex form. Such reconstruction of a PH sextic can be elaborated by C Hermite data and another one condition. The second uses polar representation in two cases. One of them can produce a family of convex sextic PH curves related with a quintic PH curve, and the other one may naturally degenerate a sextic PH curve to a quintic PH curve. In the third identification, we use some odd PH curves to construct a family of sextic PH curves with convexity-preserving property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rational Minkowski Pythagorean hodograph curves

Minkowski Pythagorean hodograph curves are polynomial curves with polynomial speed, measured with respect to Minkowski norm. Curves of this special class are particularly well suited for representing medial axis transforms of planar domains. In the present paper we generalize this polynomial class to a rational class of curves in Minkowski 3-space. We show that any rational Minkowski Pythagorea...

متن کامل

Identification and "reverse engineering" of Pythagorean-hodograph curves

Methods are developed to identify whether or not a given polynomial curve, specified by Bézier control points, is a Pythagorean–hodograph (PH) curve — and, if so, to reconstruct the internal algebraic structure that allows one to exploit the advantageous properties of PH curves. Two approaches to identification of PH curves are proposed. The first is based on the satisfaction of a system of alg...

متن کامل

On Interpolation by Planar Cubic G Pythagorean-hodograph Spline Curves

In this paper, the geometric interpolation of planar data points and boundary tangent directions by a cubic G2 Pythagorean-hodograph (PH) spline curve is studied. It is shown that such an interpolant exists under some natural assumptions on the data. The construction of the spline is based upon the solution of a tridiagonal system of nonlinear equations. The asymptotic approximation order 4 is ...

متن کامل

Euclidean and Minkowski Pythagorean hodograph curves over planar cubics

Starting with a given planar cubic curve [x(t), y(t)]T, we construct Pythagorean hodograph (PH) space curves of the form [x(t), y(t), z(t)]T in Euclidean and in Minkowski space, which interpolate the tangent vector at a given point. We prove the existence of these curves for any regular planar cubic and we express all solutions explicitly. It is shown that the constructed curves provide upper a...

متن کامل

On interpolation by Planar cubic G2 pythagorean-hodograph spline curves

In this paper, the geometric interpolation of planar data points and boundary tangent directions by a cubic G2 Pythagorean-hodograph (PH) spline curve is studied. It is shown that such an interpolant exists under some natural assumptions on the data. The construction of the spline is based upon the solution of a tridiagonal system of nonlinear equations. The asymptotic approximation order 4 is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017